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Abstract
We propose a new scheme of spin filtering employing ballistic nanostructures in
two-dimensional electron gases (2DEGs). The proposal is essentially based on
the spin–orbit (SO) interaction arising from the lateral confining electric field.
This sets the basic difference from other works employing ballistic crosses and
T junctions with the conventional SO term arising from 2DEG confinement. We
discuss the consequences of this different approach for the magnetotransport
properties of the device, showing that the filter can in principle be used not only
to generate a spin polarized current but also to perform an electric measurement
of the spin polarization of a charge current. We focus on single-channel
transport and investigate numerically the spin polarization of the current.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In recent years much effort has been devoted to the study and the realization of electric
field controlled spin based devices [1]. Many basic building blocks are today investigated
theoretically and experimentally in order to realize a fully spin based circuitry. Of particular
relevance are: (i) pure spin current generation, (ii) voltage control of the spin polarization of a
current and (iii) the electric detection of this polarization. For the same purpose many works
have been focusing on the so-called spin Hall effect [2–7] and most of the implementations in
two-dimensional electron gases (2DEGs) proposed for spin manipulation are mainly based on
the spin–orbit (SO) interaction. The SO Hamiltonian reads [8]

ĤSO = −λ2
0

h̄
eE(r)[σ̂ × p̂]. (1)

Here E(r) is the electric field, σ̂ are the Pauli matrices, p̂ is the canonical momentum operator, r
is a 3D position vector, λ2

0 = h̄2/(2m0c)2 and m0 is the electron mass in a vacuum. In materials
m0 and λ0 are substituted by their effective values m∗ and λ. A significant SO term arises from
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the interaction of the travelling charge carrier with strong electric fields in solids. The SO term
can be seen as the interaction of the electron spin with the magnetic field, Beff, appearing in the
rest frame of the electron.

2. Rashba coupling

In the case of quantum heterostructures of narrow gap semiconductors, a major contribution
to the SO coupling may originate intrinsically from its confining potential [9]. The spin Hall
effect in two-dimensional (2D) electron systems exploits the Rashba SO coupling (α-coupling)
due to an asymmetry in the quantum well potential that confines the electron gas [10]. The
main component of the SO coupling will be along ẑ, and the Hamiltonian in equation (1) will
take the form [11] Ĥ α

SO = α
h̄ [σxpy − σypx]. α in a vacuum is λ2

0 Eze while the highest value of

α in 2DEGs is close to to 10−10 eV m as reported in [12, 13].
The α-SO coupling may generate a spin-dependent transverse force on moving

electrons [14–17]. This force tends to separate different spins in the transverse direction as
a response to the longitudinal charge current, giving a qualitative explanation for the Rashba
spin Hall effect. In the presence of Rashba SO coupling, however, the electron spin, particularly
its out-of-plane projection, is not conserved, and hence the usual continuity equation fails to
describe the spin transport. This makes the spin transport phenomena in this system rather
complicated.

3. Lateral-confinement-induced coupling

Next we consider low-dimensional electron systems formed by crossing quantum wires (QWs)
through the analysis of the SO coupling in a 2D electron system with an in-plane potential
gradient. In such systems a confining (β-coupling) SO term arises from the in-plane electric
potential that is applied to squeeze the 2DEG into a quasi-one-dimensional channel [10, 18].

We adapt the general form of equation (1) to the strictly 2D case, where the degree of
freedom of motion in the z direction is frozen out (〈pz〉 = 0), and the potential energy, Vc,
depends only on x and y coordinates. Then the SO Hamiltonian in this case can be written in
the form [19]:

Ĥ β

SO = λ2

h̄
σ̂z[∇Vc(x, y) × p̂]z. (2)

The reduced Hamiltonian commutes with the spin operator Sz = h̄/2σz , and hence conserves
spin. Thus SO coupling of this kind generates a spin-dependent force on moving electrons
while conserving their spins. The standard continuity equation for spin density and spin current
is naturally established because of spin conservation.

The spin-conserving β-SO interactions are also at the basis of the quantum spin Hall effects
discovered recently [20–24].

4. Spin filters

In this paper we investigate the spin polarization of the current in the presence of (spin
conserving) β-interaction in a T-shaped conductor; in particular we show why a β-coupling
scheme results in a different working principle, as compared to equivalent structures exploiting
α-coupling [25].

In fact ‘spin filters’ based on α-coupling rely on the precession of electrons spins during
their motion through the wave guides, while the scheme we propose here, based on β-coupling,
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preserves the ẑ component of the spin at the injection and sends electrons/holes to different
stubs according to their spin value. Differently from α-coupling schemes, the device we
propose should in principle allow one, for a given charge current, to electrically measure the
spin polarization grade with its sign. As a first step in support of this statement we write down
the Hamiltonian of a T-stub with SO β-coupling and make some qualitative considerations. In
the following step we extract a quantitative analysis of a device’s transport properties using
materials parameters from the literature.

4.1. β-SO coupling and effective magnetic field

Here we focus on the case of pure β-coupling.
The basic building blocks of the nanojunctions that we discuss in the following are the

QWs. The ballistic one-dimensional wire is a nanometric solid-state device in which the
transverse motion (along ξ ) is quantized into discrete modes, and the longitudinal motion (in
the η direction) is free. In this case electrons are envisioned to propagate freely down a clean
narrow pipe and electronic transport with no scattering can occur.

In a quasi one-dimensional wire, where a parabolic lateral confining potential [26] along ξ

(ξ ≡ x for leads 1 and ξ ≡ y for leads 2 and 4) with force ωd is considered (V (r) ≡ V (ξ) =
m∗ω2

d
2 ξ 2) it follows

Ĥ β

SO = β

h̄

ξ

lω
(σ̂ × p̂)ξ � iβ

x

lω
σz

∂

∂η
, (3)

where lω = (h̄/m∗ωd)
1/2 is the typical spatial scale and η is the other direction in the 2DEG

(η ⊥ ξ ). Thus, as we discussed in a previous paper [20], in a QW a uniform effective magnetic
field, Beff, is present along z:

˜Beff = λ2

h̄
m∗2

ω2
d c ≡ β

h̄lω

m∗c

e
. (4)

Then an electron of spin Sz = sh̄/2 flowing in the QW perceives in its rest frame a magnetic
field Beff directed upward or downward according to the sign of s. This results in an interesting
behaviour of junctions between two wires, such as T stubs and cross junctions, when a large
enough β-coupling is considered.

The discussion reported above for a QW can be generalized to any device patterned in a
2DEG. The Hamiltonian of an electron moving in a 2D device defined by a general confining
potential Vc(r) in which the α-SO term is negligible can be written as

H = p2

2m∗ + λ2

h̄
e(E(r) × p)zσz + Vc(r) = π2

2
+ Vc(r) − λ4m∗

2h̄2
e2|E(r)|2, (5)

where πi = (pi − εi j z
λ2

h̄ m∗eE jσz) and E(r) = ∇Vc(r).
The commutation relation

[

πx , πy
] = −ih̄

(

λ2

h̄
m∗e∇ · E

)

σz ≡ −ih̄
e

c
Beff(r)σz

is equivalent to that of a charged particle in a transverse magnetic field, but here the sign of
Beff(r) depends on the direction of the spin along ẑ. It follows that electrons with opposite spin
states are deflected into opposite terminals by a spin-dependent Lorentz force:

F = m∗r̈(t) = −∇Vc(r) + e

m∗c
(B(r) × π), (6)

where B(r) ≡ s Beff(r)ẑ is a spin-dependent inhomogeneous magnetic field, with s = ±1.
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Figure 1. Density and 3D plots of the potential Vc(x, y) which models a T-shaped conductor. This
device can be assumed as a crossing junction between two quasi one-dimensional wires of width W
which ranges from ∼25 up to 100 nm.

4.2. The T junction

In a cross junction sample, the confining electrostatic potential for an electron is not exactly
known. However, it is plausible that there has to be a potential minimum at the centre of the
junction. In this respect, it would be appropriate to qualitatively model the smooth confining
potential, displayed in figure 1, of a T-stub structure as

VT(x, y) = m∗

2
ω2

d R2 x2 y2

(R2 + x2)(R2 + y2)
ϑ(−y) + m∗

2
ω2

d R2 y2

(R2 + y2)
ϑ(y), (7)

where ϑ(y) is a regular function which approximates the step function (ϑ(y) ∼ (1 +
tanh(y/ρ))/2 with ρ 
 lω). Here R represents the effective radius of the crossing zone,
while lω can be related to the effective width of the wires W , which is known to be smaller
than the lithographically defined one and can be further reduced by using etched side gate
electrodes. This technique also works on small gap semiconductors such as InGaAs [27]
featuring a small Schottky barrier with metals. In general, one can relate the frequency ωd

to W as ωd ∼ (2π)2

2
h̄

m∗W 2 . This expression can be obtained by comparing the energy levels of a
harmonic oscillator to those of a square potential well.

Far from the crossing zone, the confining potential describing the wires reads as
Vc(x,−∞) ∼ m∗

2 ω2
d x2 or Vc(±∞, y) ∼ m∗

2 ω2
d y2. Thus, asymptotically Beff is given by

equation (4). To have an idea of the strength of this magnetic field, we compare the cyclotron
frequency ωc = e˜Beff/(m∗c) with ωd :

˜Beff ∼ (2π)4

4

h̄c

e

λ2

W 4
↔ ωc

ωd
∼ (2π)2

2

λ2

W 2
. (8)

We report all our results as a function of the ratio ωc/ωd . In numerical calculation ωc/ωd

takes values that are in the range defined by experiments on 2DEGs. We estimate the effective
value of λ in the 2DEG from the measured value of α in the literature [12, 28] and from
the calculated band diagram of the same structures. In InGaAs/InP heterostructures λ2 takes
values between 0.5 and 1.5 nm2. For GaAs heterostructures λ2 is one order of magnitude less
than in InGaAs/InP, whereas for HgTe based heterostructures it can be more than three times
larger [13, 28]. Since the lithographical width of a wire defined in a 2DEG can be as small as
20 nm [29], we assume that ωc/ωd runs from 1 × 10−6 to 1 × 10−1. In any case W should be
larger than λF, so that at least one conduction mode is occupied.

4.3. Ballistic transport and calculations

Here we report a numerical study, limited to a single channel transport, i.e. we assume that
just the lowest subband of the QW is activated. When the characteristic sizes of semiconductor
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Figure 2. Trajectories of the charges in the T junction without SO. Each panel is for a different
value of the external magnetic field. Red and green curves correspond to trajectories of the electrons
injected in lead 1 with the same energy and opposite vx .

devices are smaller than the elastic mean free path of charge carriers, the carrier transport
becomes ballistic. It follows that the transport can be studied starting from the probability of
transmission from a probe to another one following the Büttiker–Landauer formalism [30].

The calculation of the transmission amplitude is based on the simulation of classical
trajectories of a large number of electrons with different initial conditions. We want to
determine the probability T s,s ′

1 j of an electron with spin s to be transmitted to lead j with spin
s′ when it is injected in lead 1. This coefficient can be determined from classical dynamics
of electrons injected at y0 = −7.5lω (emitter position) with an injection probability following

a spatial distribution p0(x0, y0) ∝ e
− x2

0
l2ω as in [31]. The total energy ε of a single electron is

composed of the free electron energy ε0
y for motion along y and the energy of the transverse

mode considered ε0
x due to the parabolic confinement (εx = h̄ωd/2 for the lowest channel).

Thus, we have calculated T s,s ′
i j determined by numerical simulations of the classical

trajectories injected into the junction potential Vc with boundary conditions [24] r(0)

≡ (x0, y0); v(0) ≡ v0, each one with a weight p0(x0). In general these transmission amplitudes
can depend on the position of the collectors along the probes. In this paper we take into account
Nt = 804 classical trajectories for each value of the parameters.

Before the discussion about our results we want to point out that a comparison involving
theoretical and experimental results allowed us to test our approach. In fact in [24] we
investigated the effects on the X-junction transport due to a quite small external magnetic field,
Bext, by focusing on the so-called quenched region. The measured ‘quenching of the Hall
effect’ [32] is a suppression of the Hall resistance or ‘a negative Hall resistance’ RH for small
values of Bext. The results reported in [24] showed a good agreement with the experimental
data, thus confirming the reliability of our approach.

In order to show how the symmetry breaking produces a transverse current IH, we briefly
discuss the case of a T-shaped junction, without a SO term, in a uniform external magnetic field
B directed along ẑ: in figure 2 we report the corresponding classical electron trajectories. The
increase of the magnetic field results in a broken symmetry between leads 2 and 4 and makes
the probabilities of transmission in the two leads very different.

The current Ii at lead i of a multi-probe device can be expressed in terms of chemical
potentials μ j = eVj at each lead and of the transmission coefficient Ti j as Ii =
e2/h

∑

j Ti j(Vi − Vj); normalization requires
∑

j Ti j = 1 [30, 31]. Thus to an injected current
I0 in lead 1, it corresponds a transverse Hall current

IH = (T12 − T14)I0.
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Figure 3. Spin polarization at lead 2 〈Sz〉 as a function of the Fermi energy εF in the case of zero
external magnetic field and β-SO coupling for three different values of the radius R of the crossing
zone. Around εy = 0.2h̄ωd (or, to be precise, in the range of values 0.1–0.3 depending on the value
of R) there is a quenching region corresponding to an inversion of the spin polarization [24].

This Hall current is mainly due to the electric field ∇Vc(r) for y > 0 and to the broken
symmetry between leads 4 and 2 due to the magnetic field.

5. Spin–orbit and effective magnetic field

In figure 3 we report the spin polarization of the transverse current, when considering a
vanishing external magnetic field and a β-coupling SO term. Numerical calculations are
performed using the procedure discussed above. Thus, we show the spin polarization 〈Sz〉
6
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of the current flowing along the x direction. 〈Sz〉 corresponds to

〈Sz〉 = h̄

2

T ↑↑
21 − T ↓↓

21

T ↑↑
21 + T ↓↓

21

≡ h̄

2
Pz,

in this special case where T ↑↓
i j = T ↓↑

i j = 0, because of the commutation between Ŝz and Ĥ β

SO

and T ↑↑
12 = T ↓↓

14 , T ↑↑
14 = T ↓↓

12 since the effective magnetic field depends on the spin orientation
of electrons injected in 1.

Starting from the number of trajectories we are able to estimate the statistical fluctuation
on the calculated 〈Sz〉,

σSz � h̄

2

σB

Nt
∼ h̄

2
0.018,

where we take σB ∝ √
Nt according to the binomial distribution.

Notice that for εy between 0.1 and 0.3h̄ωd there is an inversion of the spin polarization
(〈Sz〉 < 0) for each panel of figure 3. It is well known that a strong geometric dependence
of the transport properties was shown in the presence of a transverse magnetic field by giving
a negative Hall current, as we discussed above concerning the ‘quenching of the Hall effect’.
In fact, the resistances measured in narrow-channel geometries are mainly determined by the
scattering processes at the junctions with the side probes which depend strongly on the junction
shape [33]. This dependence of the low-field Hall current was demonstrated in [34] and
measured in [32]. In a recent paper [24] it was discussed how the effective field generated by the
β-SO coupling characterizes a regime of transport that can be assumed as the quenching regime
of the SHE. Hence, it follows that the inversion of the spin polarization, shown in figure 3, can
be explained on the same grounds. Moreover, this behaviour has a clear signature around
εy ∼ 0.1 − 0.3h̄ωd , while for other values of the Fermi energy the calculated quenching is
comparable with the statistical fluctuation due to the numerical approach.

The geometric dependence of 〈Sz〉 can be clearly inferred by comparing the three panels
of figure 3, where we show the effects of the width of the crossing region (R). We can conclude
that a significant spin polarization of the transverse current can be obtained at some fixed values
of the Fermi energy, and that a more efficient process is given by the junction with R ∼ 4lω,
while 〈Sz〉 can be attenuated in larger or smaller junctions.

By comparing figures 2 and 4, where some trajectories are shown, we can understand
the microscopic mechanism which produces the transverse spin current by focusing on the
symmetry breaking between the spin-up and spin-down electrons.

In order to evaluate the order of magnitude corresponding to the spin polarization, we can
calculate the dependence of 〈Sz〉 on the strength of the β-SO coupling. In figure 5 we show
the value of the spin polarization, as it can be measured at lead 2, for different strengths of
β-coupling ranging over five orders of magnitude.

We distinguish two cases according to the possibilities that in lead 1 is injected,
respectively: (i) a non-polarized current or (ii) a polarized charge current. In case (i), there
is no charge current between leads 2 and 4, but a pure spin current, ISH, that is proportional
to T ↑↑

12 − T ↓↓
12 . This quantity can also be read as the spin polarization 〈Sz〉 of the current in

lead 2, when an unpolarized spin current is injected in lead 1. Figure 3 shows that, for some
energies, this spin current quenches and eventually reverses its sign. The same is observed
for a fixed value of the energy, when changing the parameter ωc (different values of ωc could
be experimentally obtained by changing the value of the effective width of the wires defining
the T junction, or by changing the value of the coupling parameter). This phenomenon has
been treated in a recent paper [24] studying the transport through micrometric ballistic 4-probe
X-junctions, where it was found that this magneto-transport anomaly is closely related to the

7
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Figure 4. Trajectory of an electron in a T junction (R = 4lω) with the β-SO term and vanishing
external magnetic field. Electrons are injected in lead 1 with a defined spin orientation along ẑ.
Dashed lines correspond to e↓ and solid lines to e↑. Electrons are injected with the same energy
and opposite ±vx , (+red, −green).

Figure 5. Spin polarization at lead 2 〈Sz〉 as a function of the β coupling strength (given by
log10(ωc/ωd )), for a fixed value of the Fermi energy εF ∼ 0.75h̄ωd , in the case of vanishing
external magnetic field and β-SO coupling (R = 4lω).

quenched or negative Hall resistance. In case (ii) a charge current flows between leads 2 and
4, as can be seen considering a completely polarized injected current (e.g. having all electrons
with spin up). In that case T ↑↑

12 − T ↑↑
14 will be proportional to a charge current flowing between

leads 2 and 4. It is easy to see that, even if the current is not completely polarized, there will be
a charge current flowing between leads 2 and 4 that is proportional to the polarization degree
of the injected current,

I24 ∝ G24 = e2

h
εP0

z ,

where G24 is the charge conductance, ε ≡ T ↑↑
12 − T ↓↓

12 and P0
z is the spin polarization of

the injected current. This scheme would implement the electric detection of a spin polarized
current.

6. Conclusion

We described a system based on SO β-coupling capable of spin filtering and electric based spin
polarization measurements. The results we have shown were obtained using values of λ and
W well within those given by currently available 2DEGs and nanolithography techniques. The

8
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use of a series of T nanojunctions could also give some better results in the spin polarization of
the emerging current.

The proposed devices also represent a new test for the effects of the β-SO interactions
which are at the basis of the quantum spin Hall effects recently discussed in several
papers [20–24]. In these papers the α-coupling was always assumed to be negligible, although
in general this term is comparable to (or larger than) the β one. However, it can be shown that
spin polarization effects of the β-coupling should be some orders of magnitude larger than the
those calculated for α coupling of a comparable strength [24].
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